

Sinterglass Avalanche Diodes for Power-Factor-Correction (PFC)

Historical background

Why PFC is important for all future electronic equipment

The new european standard EN61000-3-2 along with amendments A1 and A2 became mandatory on 01.01.2001. Amendment has also been published with a 3 year transition period.

It says that every power-supply with an input power of more than 75 W has to be equipped with so-called power-factor correction and it says that it is not allowed to bring power-supplies into the market that are not equipped with PFC or the user has to provide an additional electronic ballast with PFC.

Technical background

What are the effects of non-PFC-equipped circuits

Non-PFC power supplies use a capacitive input filter, as shown in Figure 1., when powered from AC power line. This results in rectification of the AC line, which in turn causes peak currents at the crest of the AC voltage, as shown in Figure 2.. These peak currents lead to excessive voltage drops in the wiring and imbalance problems in the three-phase power delivery system. This means that the full energy potential of the AC line is not utilized.

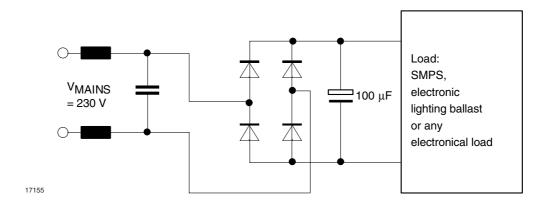
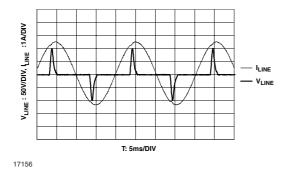
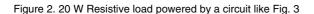




Figure 1. Standard bridge rectification of line voltage

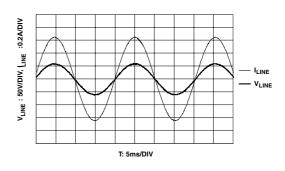


Figure 3. Same load like Fig. 2, but unity powerfactor

Document Number 86101 www.vishay.com

Power Factor Correction (PFC) can be defined as the reduction of the harmonic content. By making the current waveform look as sinusoidal as possible, as shown in Figure 3., the power drawn by the power

supply from the line is then maximized to real power. Assuming that the voltage is almost sinusoidal, power factor depends first of all on the current waveform. Thus real power can be defined as:

$$\begin{split} P &= V_{RMS} \times I_1 \times \sin(\omega_1 t) \\ S &= \sqrt{P^2 + Q^2} \\ S &= V_{RMS} \times \sqrt{I_1^2 \times \sin(\omega_1 t)^2 + I_2^2 \times \sin(\omega_2 t)^2 + \dots I_n^2 \times \sin(\omega_n t)^2} \end{split}$$

That means that real power only is carried by the fundamental harmonic, all the higher harmonics are carrying only reactive power. Eliminating the higher harmonics means increasing power factor to unity.

The defination of power factor is:

$$Power factor = \frac{Real Power}{Apparent Power}$$

For the circuit in Figure 1. Standard bridge rectification of line voltage, the power factor is typically about 40 to 50%.

For example (related to Figure 1. and Figure 2.):

The following measurements can be done with the circuit in Figure 1.:

Power factor=0.464

With the same resistor directly connected to the line terminals or using power factor correction the follow

 $I_{TRMS} = 172 \text{ mA}$ P = 20 W S = 20 W Q = 0

Power factor=1

This simple example gives a good impression what happens if all electronic equipment is powered without PFC. Obviously we see in this example the same real power, but big differences in RMS current.

Description of Standard EN 60000-3-2

The standard has 2 parts that are important for the manufacturer of electronic devices:

- · Classification of electrical loads
- Limitation of line current harmonics depending on the effective class of the load

Classification of electrical loads

This standard will be effective for all electrical loads supplied by the low voltage power line with line input currents up to 16 Amps.

- In general all 3-phase line-loads and all loads that can not be classified to be class B, C or D loads are class A loads.
- All portable electrical tools are class B loads.
- All lighting devices or lighting regulators are class C loads.
- All electrical loads with a power consumption below 600 W and line input current waveform that for a half period of the line voltage is 95% or more inside the hatched area of the diagram shown in

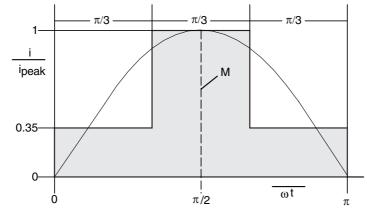


Figure 4. Definition criterium for Class D load

17158

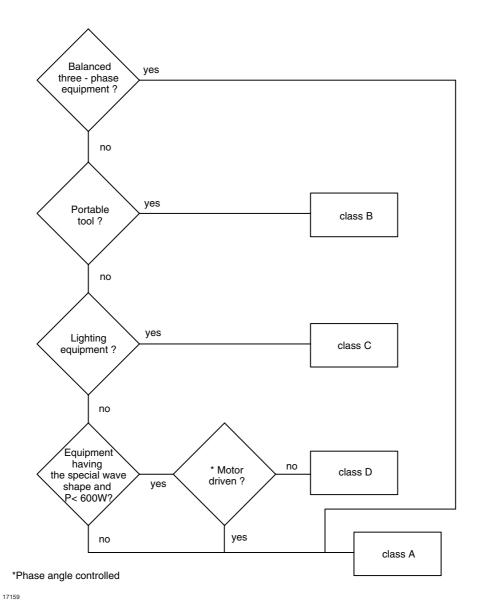


Figure 5. Flow chart for the classification of equipment

Class related limitations of harmonics

# of harmonic [n]	RMS current limit [A]	
3	2.3	
5	1.14	
7	0.77	
9	0.40	
11	0.33	
13	0.21	
15 < n < 39	0.15 x 15/n	
Table 1. Limits of class A odd harmonics		

# of harmonic	RMS current limit		
[n]	[A]		
2	1.08		
4	0.43		
6	0.30		
8 < n < 40	0.23 x 8/n		
Table 2. Limits of class A: even harmonics			

Electrical loads in class B show 1.5 times higher limit currents compared to class A limits

Document Number 86101 www.vishay.com
Rev. 7, 07-Jan-03 3

# of harmonic	RMS current limit	
[n]	[% of the fundamental harmonic]	
2	2	
3	30 x $\lambda^{3)}$	
5	10	
7	7	
9	5	
11 < n < 39	3	
Table 3.Limits of class C		

³⁾ λ = Powerfactor of the circuit

Because usually the third harmonic has the highest amplitude using the power factor as a factor for the limit becomes of greater importance. Smaller power factor means tougher limit and vice versa.

# of harmonic [n]	RMS current limit per Watt [mA / W]	RMS current limit [A]	
3	3.4	2.3	
5	1.9	1.14	
7	1.0	0.77	
9	0.5	0.40	
n > 13	3.85/n	0.15 x 15/n	
Table 4. Limits for class D harmonics			

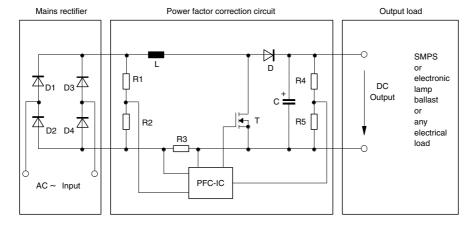


Figure 6. Typical boost converter topology for active PFC

Because it is the most cost saving solution the continuous current mode boost converter as shown in figure 6 is today the most used topology for active power factor correction.

The bridge rectifier BR1 converts the AC input current into DC current. The MOSFET T is used as an electronic switch, and is cycled "on" and "off" driven by the PFC-IC. While the MOSFET is "on" the inductor current through L increases. While the MOSFET is "off", the inductor delivers current to the capacitor C through the forward biased output rectifier diode D. The inductor current does not fall to zero during the entire switching cycle, because this operation is

called "continuous current mode". This mode is suitable for almost all load current variations. If a constant load current is expected the so-called "discontinuous current mode", where currents falls at the end of each cycle to zero, should be preferred. The MOSFET anyway is pulse-width-modulated so that the input impedance of the circuit appears purely resistive, and the ratio of peak to average current is kept low.

The most cost-effective way of reducing losses in the circuit is by choosing a suitable diode D for the application. Diodes for use in PFC circuits typically have

higher forward voltages than conventional fast epitaxial diodes, but much shorter (faster) reverse recovery times.

How a standard PFC circuit works

Figure 6 shows the typical topology of a PFC prestage that is built of a standard boost converter driven by a control IC. It is important that at the output of the Rectifier BR1 there will be no "large" smoothing capacitor with several mF connected, because that would eliminate all efforts of the PFC circuit, although it would operate sufficiently. The input voltage of the PFC is a rectified DC voltage pulsed with double line frequency. The shown switch is usually implemented by an IGBT or Power-MOS transistor.

Operation principle:

The instantaneous value of the current through the boost inductor has to be adapted as well as possible to the instantaneous value of the line voltage through suitable pulse-width modulation of the transistor switch T. The actual inductor current can be won by the voltage drop at R3.

The input voltage can be found at the voltage divider R1, R2. The current amplitude will be regulated on the value of the output voltage, R4, R5.

To be able to control the current through the boost inductor, the output voltage of the PFC has to be higher at every moment of operation than the crest of the line input voltage. For 230 V mains the DC output should be about 400 V. A large capacitor at the ouput does not affect the power factor, but is good for smoothing the DC voltage.

An additional advantage of PFC circuit is the regulated DC voltage that gives the opportunity of having a following SMPS to be wide range operated (e.g. 110 V to 230 V input voltage).

Advantages of circuits with PFC

- The use of PFC allows the manufacturer of electrical load to use smaller, more cost-effective mains rectifiers because of smaller RMS current with PFC.
- Offers a stable regulated output voltage which is the input voltage for the following electrical load. Indeed the PFC makes it a system based widerange power supply itself.
- The following electrical load (SMPS, Electronic ballast unit or other electrical load) can be much simpler, which is also a cost saving factor.

VISHAY Semiconductor recommends the use of their Ultra-fast Sinterglass Avalanche Diode series of PFC Sinterglass Avalanche Diodes.

V _{LINE} RMS	V _{RRM}	
[V]	[V]	
110	400	
120	400	
230	600	
277	600	
Table 5. Recommended reverse voltages for most used line voltage levels		

Preferred types for the mains sinterglass avalanche diodes and the boost sinterglass avalanche diodes are listed in Tables 6 and Table 7.

Mains Sinterglass Avalanche Diodes (4 devices each)

Input Power	Mains Voltage		
	120 V	230 V	277 V
≤ 75 W	BYT51G		
≤ 100 W	BYT51G BYW53	BYW54	
≤ 150 W	BYW83		
≤ 200 W		BT51K BYW55	BYT51M
≤ 250 W		BYW85	BYT51M BYW56
≤ 400 W			BYW86
Table 6.Selection Guide for the mains sinterglass avalanche diodes			

Document Number 86101 www.vishay.com

Rev. 7, 07-Jan-03

Conditions:

 $T_{amb} = 40 \, ^{\circ}C$

Leaded sinterglass avalanche diodes PCB mounted

Because of large variations in the applications the table above shows a rough selection only. The appropriate diode must be selected depending on the application! For wide range power supplies the lowest

mains voltage will result in the highest forward losses of the diode. For these applications the selection of the reverse voltage must be at the highest voltage, the power selection at the lowest.

Boost - Diodes

Input Power	Mains Voltage		
	120 V	230 V	277 V
≤ 75 W	BYT53G BYV26B		
≤ 100 W	BYV27-600 SF4004		BYW36
≤ 150 W	BYV28-600 2* BYV27-200	BYV26C SF4005	BYV26C
≤ 200 W	BYW178 SF5404 2* BYV98-200	3* BYV27-200	SF4005
≤ 250 W	2* BYV28-200	BYV27-600	3* BYV27-200
≤ 300 W		SF5406 3* BYV98-200	BYV27-600
≤ 350 W	BYW178	BYV28-600 BYW178 2* BYV27-200	SF5406
≤ 400 W		3* BYV28-200	BYV28-600 BYW178 3* BYV27-200
≤ 500 W			3* BYV98-200
Table 7.Selection Guide for the boost diodes			

Conditions: T_{amb} = 40 °C, Leaded diodes PCB mounted

Because of large variations in the switching conditions (frequency....) the table above shows a rough selection only, the data are calculated with $\approx\!\!25\%$ switching losses. The appropriate diode with the right characteristics (especially switching characteristic/reverse recovery time t_{rr}) must be selected depending on the application! Depending on these requirements the series connection of 2 or 3 diodes (e.g. 3*BYV98-200) can be the better solution.

www.vishay.com Document Number 86101
6 Rev. 7, 07-Jan-03